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Abstract
ThepHgradient in normal cells is tightly controlled by the activity of various pH-regulatorymembrane proteins

including the isoform protein of the Naþ/Hþ exchanger (NHE1). NHE1 is constitutively active in a neoplastic
microenvironment, dysregulating pH homeostasis and altering the survival, differentiation, and proliferation of
cancer cells, thereby causing them to become tumorigenic. Cytoplasmic alkalinization in breast cancer cells
occurs as a result of increasedNHE1 activity and, whilemuch is known about the pathophysiologic role of NHE1 in
tumor progression with regard to ion flux, the regulation of its activity on a molecular level is only recently
becoming evident. Themembrane domain ofNHE1 is sufficient for ion exchange. However, its activity is regulated
through the phosphorylation of key amino acids in the cytosolic domain as well as by its interaction with other
intracellular proteins and lipids. Here, we review the importance of these regulatory sites and what role they may
play in the disrupted functionality of NHE1 in breast cancer metastasis. Cancer Res; 73(4); 1259–64.�2013 AACR.

Introduction
Dysregulation of the pH gradient in and around cancer cells

is a crucial step in tumor progression leading to metastasis.
Abnormal increased proliferation of cells, loss of cell–cell
contact, and detachment from the extracellular matrix results
in a tumormetabolicmicroenvironment that is hypoxic, acidic,
and deprived of serum (1). Extracellular acidification around
tumor cells can be attributed to disrupted pH homeostasis as
these cells adapt to the harsh extremes of the neoplasticmilieu.
Normal cells may undergo apoptosis under these conditions;
however, cancer cells survive by manipulating and exploiting a
host of ion exchangers including NHE1, the most common
isoform of the Naþ/Hþ exchanger family that is ubiquitous to
all mammalian cells (2). The pathophysiologic function of
NHE1 in various cell types is well-documented (3), but of
particular interest is that proton extrusion plays a pivotal role
in cell migration, which, in cancer, is necessary for tumors to
invade andmetastasize at sites distant from the primary tumor
(4). In breast cancer, it is suggested that dysregulation of NHE1
activity is the predominant factor leading to tumor metastasis
(1); however, this claim remains to be fully substantiated. In
this review, we discuss how the multiplex regulation of NHE1
activity impinges on breast cancer disease progression and
current treatment regimes.
HumanNHE1 is amembrane protein that is 815 amino acids

in length, with residues 1 to 500 comprising the membrane

domain and residues 501 to 815 comprising the cytoplasmic
tail (Fig. 1A). The membrane domain of NHE1 extrudes 1
intracellular proton in exchange for 1 extracellular sodium
ion, protecting the cell from acidification and regulating
intracellular pH (pHi). Ion flux is driven by the transmembrane
Naþ gradient and requires no direct metabolic input in normal
cells. In addition, the activity of the exchanger is allosterically
increased with decreasing pHi, resulting in a rapid activation of
NHE1 and a subsequent elevation of pHi as a consequence of
increased proton extrusion (5). NHE1 activity is regulated by
the phosphorylation of key amino acids in its C-terminal
cytosolic domain, as well as by interactions of the C-terminal
tail with intracellular proteins and lipids (Fig. 1A and B; ref. 3).
Regulation of NHE1 at the molecular level has been elucidated
in a variety of cell types and tissues. In many cases, it is unclear
if these regulatory pathways are retained in breast cancer
cells, although a review of the known regulators of NHE1 can
illuminate potential pathways in tumor cells. These regulators
of NHE1 are activated or controlled by extracellular growth
factors, hormones, and other agonists (serum, thrombin, epi-
dermal growth factor, insulin, angiotensin II, and others; ref. 6).
Ultimately, NHE1 regulators alter transport activity by altering
the affinity for intracellular Hþ such that it is more active at a
more alkaline pHi (6, 7). Much of the hormonal regulation of
NHE1 is not just due to phosphorylation, but is mediated by
several regulatory proteins and cofactors including calcium-
binding proteins that associate with the cytosolic regulatory
tail. The approximate binding sites of regulator proteins and
cofactors is illustrated in Figure 1B. This includes calmodulin
(CaM), which binds to a high- and low-affinity site located
between amino acids 636 and 700, and blocks an autoinhibitory
site, thereby activating NHE1 (8). It also includes the calci-
neurin homologous protein (CHP) group of regulatory calci-
um-binding proteins. CHP1 and CHP2 bind to NHE1 in the
region of amino acids 518 to 537 (Fig. 1B), where CHP1 is
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Figure 1. Schematic diagram
summarizing NHE1 regulation
by proteins, cofactors, and
protein kinases. A, NHE1
protein in the plasma
membrane with regulatory
pathways in the tumor
microenvironment indicated.
B, the cytosolic regulatory tail of
NHE1 is enlarged and indicates
the location of regulatory
binding sites and sites of
phosphorylation. CaM,
calmodulin; CHP, calcineurin
homologous protein; ERM,
ezrin, radixin, moesin; PIP2,
phosphatidylinositol
4,5-biphosphate.
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thought to be important for NHE1 activity and its stabilization
and localization to the plasma membrane (9). CHP2 is highly
expressed in tumor cells; it is protective against serum dep-
rivation–induced cell death by increasing pHi (10) and may
play a role in the enhanced proliferation of tumor cells (11).
CHP3, or tescalin (binding site uncertain), is thought to pro-
mote maturation and cell surface stability of NHE1 (12, 13).
Another regulatory factor of NHE1 is phosphatidylinositol 4,5-
biphosphate (PIP2), which binds at 2 sites between amino acids
513 and 520 and 556 and 564 (Fig. 1B). Depletion of PIP2 results
in ATP-dependent inhibition of NHE1 (14). Carbonic anhy-
drase II (CAII) is an enzyme that catalyzes the production of
HCO3

� and Hþ from the hydration of CO2, and it associates
with NHE1 at amino acid residues 790 to 802 and increases its
activity (15). In addition, the actin-binding ERM (i.e., ezrin,
radixin, and moesin) proteins bind to NHE1 between amino
acids 552 and 560, anddirect the proper localization ofNHE1 to
the plasma membrane as well as maintaining cell shape (16).
Daxx is a death domain–associated protein that competeswith
ezrin in binding to the ERM-interacting domain of NHE1 (17),
while the 14–3-3 adaptor protein only binds to NHE1 when it is
phosphorylated at S703 (Fig. 1B), thus activating NHE1 by
protecting S703 from dephosphorylation (18). Finally, heat
shock protein 70 (Hsp70) binds to NHE1 and may play a role
in protein folding (19).
Several protein kinases are also involved in the regulation of

NHE1 and their actions have been described in a number of
studies in varying cell types. They are known to phosphorylate
specific amino acids of the regulatory cytosolic domain. Figure
1B illustrates the relative position of several phosphorylation
sites in this domain. Briefly, p160ROCK is a serine/threonine
protein kinase and downstream target of RhoA. It facilitates
the assembly of focal adhesion and actin stress fibers and was
shown to mediate the RhoA activation of NHE1 in fibroblasts
(20). In vascular smoothmuscle cells, angiotensin II stimulates
NHE1 by ERK-dependent p38MAPK phosphorylation and, in
pro-B cells, NHE1-mediated apoptosis is regulated by phos-
phorylation at amino acids T718, S723, S726, and S729 (21).
Interestingly, the mutation of S726/729 to nonphosphorylatable
alanine is protective against serum deprivation–induced cell
death (22). In myocardial cells, Erk 1/2–dependent pathways
are critical in the regulation of NHE1; Erk 1/2 phosphorylates
NHE1 at S770 and S771, while p90rsk, a kinase downstream of Erk
1/2, phosphorylates NHE1 at S703 and, by doing so, forms a 14–
3-3 ligandbinding site (18). Protein kinaseB (Akt)was shown to
phosphorylate S648 and inhibit myocardial NHE1 activity,
possibly by interfering with CaM binding (23); however, in
other cell types, Akt phosphorylation stimulates NHE1 activity
and is thought to be important for cell growth and survival and,
possibly, in metastasis (24). Other kinases that are involved in
the direct phosphorylation of NHE1, but are less defined in
their site of action, include Nck-interacting kinase (NIK) and
Ca2þ/calmodulin-dependent kinase (CaMKII; refs. 25, 26). In
addition, protein kinase A, C, and D are known to regulate
NHE1 activity indirectly (27). Lysophosphatidic acid (LPA), a
bioactive phospholipid that mediates its effects through pro-
tein kinases and by association with G-protein coupled recep-
tors (GPCR), stimulates Ga13-mediated activation of both the

RhoA and Cdc42 pathways. Activation of the RhoA pathway
results in p160ROCK activation, which potentiates NHE1
activation possibly by direct phosphorylation. In contrast,
activation of the Cdc42 pathway mediates Erk 1/2 activation
leading to NHE1 stimulation (28).

Although NHE1 plays a demonstrable role in breast cancer
metastasis (outlined in Fig. 1A), the exactmechanism by which
the activity of NHE1 is elevated is not well known. In breast
cancer cells, early work showed that mimicking the tumor
microenvironment by serum deprivation stimulates NHE1
activity in metastatic breast cancer epithelial cell lines but
not in nontumorigenic cells. This was a direct result of alter-
ation of the Hþ affinity of the exchanger. Phosphoinositide-3-
kinase (PI3K) inhibition impaired NHE1 activity in serum-
supplemented conditions but potentiated the serum-deprived
activation of NHE1. This upregulation of NHE1 under serum
deprivation is thought to occur via a PI3K-dependent mech-
anism, but direct phosphorylation of NHE1 was not shown in
that study (29). More recently, it was observed that in serum-
deprived human breast cancer cells, the activation of NHE1 is
regulated by a sequential RhoA/p160ROCK/p38MAPK signal-
ing pathway that is gated by direct protein kinase A phos-
phorylation and inhibition of RhoA, suggesting that serum
deprivation leads to a dynamic remodeling of the cytoskeleton
forming long leading-edge pseudopodia that are uniquely
poised for invasion and metastasis (30). Invadopodia, which
are actin-rich invasive protrusions of these pseudopodia, are
capable of proteolytic degradation of the extracellular matrix
(ECM), thereby allowing invading cells to detach from the ECM
and metastasize elsewhere (1). Several actin regulatory pro-
teins including cortactin and cofilin are upregulated in these
invasive cells and are specifically associated with invadopodia
formation (31, 32). In MDA-MB-231 breast cancer cells, cor-
tactin phosphorylation was found to be important in invado-
podia maturation, the regulation of Nck1 binding, and cofilin
activity, as well as promoting the recruitment of NHE1 to
regulate pH in the invadopodia (33). CD44, a cell surface
glycoprotein that serves as a receptor for hyaluronic acid (Fig.
1A), has also been shown to localize to the invadopodia of
invasive breast cancer cells, stimulating NHE1 activity and
invasion through the RhoA effector ROCK1. This activation of
NHE1 was shown to create an acidic extracellular microenvi-
ronment that facilitates protease-mediated degradation of the
extracellular matrix and promotes breast cancer cell invasion
(34). The same authors also show that a RAC1 and RhoA–
ROCK–PI3K pathway are involved in CD44-induced cell inva-
sion (35), which, taken together, suggest that these signaling
molecules drive NHE1 activation, cellular alkalinization, and
extracellular acidification, all of which facilitate invasion.
Similarly, hypoxia triggers the activation of the p90 ribosomal
S6 kinase (p90rsk) in HT-1080 fibrosarcoma cells resulting in
invadopodia formation and increased invasive capability via
site-specific phosphorylation and activation of NHE1 (36), but
whether or not the same is true in breast cancer cells is not
known.

In a comparison between noninvasive MCF-7 cells and
invasive MDA-MB-231 cells, the role of MAPK signaling path-
ways in NHE1-mediated breast cancer metastasis was
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examined. It was found that the constitutively phosphorylated
levels of Erk 1/2 and p38MAPK were higher in MDA-MB-231
cells, but both cell types expressed a similar level of phosphor-
ylated c-Jun N-terminal kinase JNK. Treating MDA-MB-231
cells with either an NHE inhibitor (cariporide) or MAPK
inhibitors suppressed the invasive capability of these cells,
while treatmentwith a JNK-specific inhibitor hadno effect (37).
It is of interest to note, however, that while many studies have
shown that NHE1 is regulated by MAPK in various cell types,
there is also mounting evidence to suggest a role for NHE1 in
the regulation of MAPK pathways (38); this could be of
particular importance in the pathophysiology of breast cancer
progression and could shed light on the complex interaction
between the exchanger and its associated intracellular signal-
ing molecules.

Together with themultitude of key regulatory sites on NHE1
acting as potential drug targets, several therapeutic applica-
tions may exist for the use of NHE1 inhibitors as adjuvants, to
reverse dysregulated pH in the tumor environment, thereby
ameliorating the efficacy of anticancer drugs on tumor growth
and survival. Although there is some evidence to show that
NHE1 inhibition or downregulation has an effect on the
invasiveness of breast cancer cells in vitro, it should be noted
thatmany studies are based on cells cultured in a well-buffered
2-dimensional (2D) milieu, generally in the absence of bicar-
bonate, while the tumor microenvironment in vivo can be
different from these experimental conditions. For example,
Boedtkjer and colleagues (39) showed that, while both Naþ/Hþ

exchange and Naþ/HCO3
� cotransport contribute to pH reg-

ulation, net acid extrusion by the Naþ, HCO3
�-cotransporter

NBCn1 is the major determinant of intracellular pH regulation
in primary human breast cancer carcinomas at pHi levels less
than 6.6, with NHE activity prominent under more acidic pHi

conditions (39). In spite of this, however, there is significant
evidence suggesting that inhibition or deletion of NHE1 has
significant affects on tumor growth in several in vivo models
(40–43). Although these studies were not done in breast cancer
cells, they are suggestive that NHE1 could play a similar role in
breast cancer. Therefore, approaches to modulate NHE1 activ-
ity are of interest. Aside from targeting kinases that modulate
NHE1 activity, its function could be impaired with inhibitors of
various cell surface receptors, intracellular regulatory proteins,
or signaling molecules, and potentially with inhibitors of
extracellular agonists of the exchanger. All of these could be
diverse treatment options for patients with breast cancer. One
example is the receptor tyrosine kinase ErbB2 (Fig. 1A). This
kinase is upregulated in approximately 30% of patients with
metastatic breast cancer and is associated with resistance to
paclitaxel, a chemotherapeutic agent used in the treatment of
breast cancer. In a phase 2 clinical trial, ErbB2-positive mam-
mary carcinomas became susceptible to paclitaxel treatment
in vivo when paclitaxel was administered in combination with
trastuzumab, a humanized monoclonal anti-ErbB2 antibody
(44). N-terminal truncation of ErbB2 renders it constitutively
active as is common in breast cancer cells where its expression
is associatedwith increasedmetastatic potential. Interestingly,
in MCF-7 cells expressing the truncated ErbB2 kinase, inhibi-
tion or knockdown of NHE1 sensitizes these cells to cell death

induced by the chemotherapeutic drug cisplatin. This indi-
cates that the resultant cathepsin release may be amplified by
NHE1 inhibition (45). ErbB2 upregulation is also generally
associated with the inhibition of cyclin-dependent kinase
CDK1 (46). In breast cancer xenograft tumors, those with
significantly higher CDK1 specific activity were sensitive to
paclitaxel in vivo, while tumors without increased CDK activity
were resistant to the drug (47); however, there is no evidence to
suggest a more direct link between CDK1 and NHE1 activity.
Reshkin and colleagues, in 2003, also identified NHE1 as an
essential component of paclitaxel-induced apoptosis in breast
cancer cells and showed that simultaneous inhibition of NHE1
results in a concurrent enhancement of low-dose paclitaxel cell
death (48). Taken together, these data indicate that the efficacy
of paclitaxel and cisplatin chemotherapy may potentially be
enhanced in the presence of NHE1 inhibitors.

NHE1 is also shown to mediate invasion in MDA-MB-231
cells through the regulation of membrane-type 1matrix metal-
loproteinase (MT1-MMP; see Fig. 1A; ref. 37), and several MMP
inhibitors exist that could potentially have a synergistic effect
on decreasing invasiveness if used in combination with NHE1
inhibitors. The same may be true when using agonists or
antagonists of GPCRs or inhibitors of other receptors associ-
atedwithNHE1. For example, the expression of the peroxisome
proliferator-activated receptor g (PPARg) is greater in breast
cancer cells compared with normal breast epithelium. Kumar
and colleagues (49) showed that, in breast cancer cells over-
expressing PPARg , ligand-induced activation of the receptor by
its natural and synthetic agonists inhibits the proliferation of
tumor cells by downregulating NHE1 transcription as well as
protein expression in vitro. Furthermore, histopathologic anal-
ysis of breast cancer biopsies from patients treated for type 2
diabetes with the PPARg agonist rosiglitazone showed a
marked decrease in NHE1 protein expression in the tumor
tissues (49). Troglitazone, another member of the PPARg-
ligand family, is known to induce severe acidosis mediated by
the inhibition of NHE1 activity in MCF-7 and MDA-MD-231
cells, leading to a discernible reduction in cell proliferation,
although this effect is highly dependent on the delivery and
concentration of the drug, where it is stimulatory at low
concentrations and inhibitory at higher concentrations (50).
Studies like this and others highlight the need for chemother-
apeutic strategies that exploit the additive anticancer effects of
using drugs that inhibit NHE1 activity as well as those that
target sites of NHE1 regulation.

Despite the progress made in both diagnostic and thera-
peutic approaches in the treatment of breast cancer, the
leading cause of fatality in patients with the disease is still
metastasis: the invasion and spread of the primary tumor to
other sites in the body. The development of novel strategies to
either inhibit tumor progression or prevent tumors from
metastasizing is, therefore, essential. Because pH regulation
plays such an integral role in the switch from the normal to the
neoplasticmicroenvironment, it is imperative that theNaþ/Hþ

exchanger be considered as an important target in the fight
against breast cancer. With in vitro data suggesting an
increased efficacy of chemotherapeutic drugs when used in
synergy with NHE1 inhibitors, a multifaceted approach taking
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into account the complex regulation of NHE1 could lead to new
avenues of treatment in the search for a cure.
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