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Abstract
The mammalian Na+–H+ exchanger isoform 1 (NHE1) is a plasma 
 membrane protein that regulates intracellular pH in the myocardium by 
removing one intracellular hydrogen ion in exchange for one extracellular 
sodium ion. While NHE1 regulates intracellular pH, it is also involved in 
the damage that occurs to the myocardium with ischemia and reperfusion. 
Additionally, NHE1 levels are elevated in cardiac diseases such as hyper-
trophy, and NHE1 inhibition can reduce ischemia–reperfusion damage 
and prevent heart hypertrophy in animal models. Recently, it has been 
demonstrated that elevation of NHE1 levels occurs in several kinds of 
hearts disease. Surprisingly, the effect of elevation of these levels is  varied, 
sometimes having beneficial and sometimes detrimental effects.
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Introduction

The mammalian Na+–H+ exchanger (NHE) is a 
membrane protein that removes one intracellu-
lar hydrogen ion in exchange for one extracel-
lular sodium ion. It is ubiquitously expressed in 
mammalian cells and is widespread throughout 
the animal kingdom. NHE plays a critical role 

in intracellular pH (pHi) regulation protecting 
cells from acidification as well as regulating 
cell volume and sodium fluxes (reviewed in 
[1]). One family of ten isoforms of NHE exist; 
however, the NHE isoform 1 (NHE1) is the 
only plasma membrane isoform expressed in 
the myocardium [2–7]. NHE1 is of special 
importance in the myocardium as it is implicated 
in both myocardial damage from ischemia– 
reperfusion injury, and heart hypertrophy (see 
below and reviewed in [8]). NHE1 consists of a 
membrane domain that transports ions and a 
cytosolic domain that modulates activity of the 
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membrane domain and is a target of various 
forms of regulation (reviewed in [9]).

NHE Structure and Subtypes

Human NHE1 is an 815 amino acid protein. The 
first 500 residues are predicted to be 12 trans-
membrane spanning segments, and the remaining 
residues constitute a cytosolic intracellular regu-
latory domain [10–12] (Fig. 1). It should be noted, 
however, that there is recently some doubt about 
the transmembrane organization [13]. NHE1 
forms homodimers in vivo, although the individ-
ual protein subunits can function independently 
of each other [14, 15]. The structure of a bacterial 
sodium hydrogen antiporter has been determined 
[16], but it is not very homologous with NHE1 
and is part of a different NHE family with differ-
ent characteristics including electrogenic trans-
port [17]. The family of mammalian NHE-like 
proteins includes ten commonly known isoforms 
(NHE1-10) each the product of a different gene and 
with different tissue distributions and physiologi-
cal roles (reviewed in [9, 18]). The first type cloned 
was named NHE1 [19], and it is ubiquitously 
expressed in mammalian cells. NHE1 was also 
identified by our laboratory as the predominant 
plasma membrane isoform in the myocardium 

[3]. It has been shown to be concentrated along 
intercalated disks and transverse tubule system of 
heart cells [20]. Heart cells lack the plasma mem-
brane isoforms NHE2–5. NHE2–4 are expressed 
mainly in the kidney and gastrointestinal tract 
[21–23]. NHE5 is found in the brain [24], while 
NHE6–9 are localized to intracellular organelle 
membranes, such as  endosomes, mitochondria, 
and the Golgi apparatus [25, 26], NHE10 is 
expressed in osteoclasts [27]. The protein identity 
of the various isoforms varies from 25 to 70%; 
however, all share a common predicted secondary 
structure [7]. A more distant family of two mam-
malian cation proton antiporters is made of NHA1 
and NHA2, and these proteins may be involved in 
mediating hypertension [28, 29]. Similarly, a 
splice variant of NHE1 has also been suggested to 
be important in hypertension [30].

Importance of NHE and pH 
Regulation in the Myocardium

NHE is important in pHi regulation in the myo-
cardium. Myocardial energy production gener-
ates protons and the negative membrane potential 
of the plasma membrane tends to accumulate 
protons within the cytosol (Fig. 2). Decreased 
pHi inhibits contractility. NHE1 removes these 

Fig. 1 Simplified 
schematic diagram of the 
Na+–H+ exchanger. The 
membrane domain of 
approximately 500 amino 
acids catalyzes the 
exchange of one intracel-
lular H+ in exchange for 
one extracellular Na+. The 
intracellular cytosolic 
domain of approximately 
315 amino acids regulates 
the membrane domain



45Elevated Na+–H+ Exchanger Expression and Its Role in Myocardial Disease

protons. At low pHi (pH  6.5), the exchanger is 
maximally active and at higher pH’s activity is 
reduced or negligible. However, the pH depen-
dence can be shifted toward the more alkaline 
range by 1-adrenergic stimulation and by 
 hormones such as endothelin [31, 32]. Our labo-

pathways are important in this response [33, 34]. 
NHE1 is normally the key mechanism of proton 
removal with HCO3-based transporters contribut-
ing to a lesser degree from recovery from intrac-
ellular acidosis [35–41].

NHE1 Physiological and Pathological 
Roles (in Other Tissues)

NHE1 has several roles in many cell types (see 
[7, 9, 17, 42] for reviews). Knockout of NHE1 
from cells shows that NHE1 plays a role in 
growth, especially in the presence of more acidic 
media [43]. Similarly, NHE1-deficient mice dem-
onstrated decreased postnatal growth and ataxia 
and epileptic-like seizures [44, 45]. NHE1 is also 
important in cell cycle progression [46, 47], while 
NHE1 is additionally permissive in cell differen-
tiation which we [48] and others [49] demon-
strated. The involvement of NHE1 in cell growth 
and differentiation suggests that the protein is 
important in normal developmental processes. 
NHE1 also modifies apoptosis. In mouse -cells, 

trophic factor withdrawal triggers pHi dysregula-
tion and apoptosis. NHE1 is activated leading to 
cellular alkalinization and progression of apoptosis 
[50]. We showed that this activation is through 
p38-dependent phosphorylation of the NHE1 tail 
[50]. NHE1-dependent alkalinization plays a pivotal 
role in the development of a transformed pheno-
type of malignant cells, and inhibition of NHE1 
prevents or reduces such development [51–53]. 
Additionally, in breast cancer cells NHE1 activa-
tion is key in their cell invasion activity [54–56].

Pathological Roles of NHE1  
in the Myocardium

NHE1 contributes to several types of myocardial 
disease. The best known is the role of NHE1 in 
ischemia–reperfusion damage in the myocardium 
[57–60]. During ischemia, anaerobic glycolysis 
occurs, resulting in the increased production of 
protons. These serve to activate NHE1. The acti-
vated NHE1 exchanges the more H+i for extracel-
lular Na+. This leads to a rapid accumulation of 
sodium in the cell [57–60]. The high sodium con-
centration drives an increase in Ca2+ via reversal of 
the activity of the Na+–Ca2+ exchanger. This results 
in an increased level of intracellular Ca2+, which 
triggers various pathways leading to cell death 
(Fig. 3). Hundreds of preclinical studies have 
shown that inhibition of NHE1 during ischemia 
and reperfusion protects the myocardium from cal-
cium overload (see [60, 61] for reviews). In various 
animal models, NHE1 inhibitors such as cariporide, 
amiloride, and EMD 85131 have proven to be car-
dioprotective [62–64]. Activation of NHE1 regula-
tory pathways is also important in NHE1-mediated 
damage to the myocardium, and this results in fur-
ther detrimental activity of the NHE1 protein [65].

NHE1 Is Important in Cardiac 
Hypertrophy

NHE1 inhibition prevents cardiac hypertrophy 
including in vivo in rats subjected to myocardial 

Fig. 2   Illustration of the role of the Na+–H+ exchanger in 
myocardial metabolism. The Na+–H+ exchanger removes 

-
lysis. Excess protons are inhibitory to cardiac contractil-
ity. The negative membrane potential tends to retain 
intracellular protons
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infarction [66, 67], in mice with guanylyl cyclase-
A receptor knockout [68] and in vitro in isolated 
cardiomyocytes [69
kinases and protein kinase C-dependent path-
ways, which are important in hypertrophic and 
remodeling processes [34, 70]. We demonstrated 
that the effect of the hypertrophic agonist aldos-
terone can be blocked by NHE1 inhibition [69] as 
can stretch-induced hypertrophy [71
of increases in intracellular Na+ is a possible 
mechanism by which NHE1 inhibition prevents 
hypertrophy [72, 73].

NHE1 Is Important in Apoptosis  
in the Myocardium

Studies in animals and humans have shown that 
in addition to necrosis, apoptosis significantly 
contributes to myocyte loss following myocar-
dial infarction [74–77] including results suggest-
ing that apoptosis is a critical form of cell death 

in infarcted human myocardium [78]. Much of 
the detrimental effects of NHE1 in hypoxia- 
reoxygenation are mediated through apoptosis. 
Inhibition of NHE1 activity via the specific 
inhibitor cariporide results in decreased apopto-
sis in isolated cardiomyocytes [79] and in fibro-
blasts [80]. In addition, inhibition of NHE1 
activity before ischemia has been shown to 
reduce myocardial apoptosis in isolated rat hearts 
[81, 82], in mouse hearts [83] and in pacing-
induced heart failure in rabbits [84]. Humphreys 
et al. [85] also reported that in an ischemic rat 
model, the NHE1 inhibitor cariporide reduced 
apoptosis and this was associated with a signifi-
cantly higher ratio of (antiapoptotic) Bcl-2 to 
(pro-apoptotic) Bax [83, 85]. Regulation of 
NHE1 has been implicated in NHE1 induced 
apoptosis in the myocardium [86, 87]. Recently, 
we have shown that amino acids Ser726 and Ser729 
are involved in critical regulation of NHE1 caus-
ing apoptosis [88]; however, in cardiac myocytes 
we showed that amino acids Ser770 and Ser771 are 
more important in regulation of NHE1 [65].

Fig. 3  Series of events leading to myocardial injury 
through the Na+–H+ exchanger. Ischemia leads to an 

-
els. This causes an increase in intracellular protons and 

Na+–K+

by the Na+–H+ exchanger, which results in an increase in 
intracellular sodium. This is removed by the reverse mode 
of the Na+–Ca2+ exchanger, resulting in an increase in 
intracellular calcium. This leads to cell damage including 
necrosis and apoptosis
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NHE1 Inhibition for Treatment  
of Other Cardiovascular Conditions

Aside from the general conditions of hypertrophy 
and ischemia–reperfusion damage, a number of 
specific cardiovascular conditions have been 
examined and are briefly summarized. NHE1 
inhibitors have for example, been useful in inhibit-
ing diabetic vascular hypertrophy [89, 90] and pre-
vent alterations in coronary endothelial function in 
streptozotocin-induced diabetes [91]. NHE1 is 
also known to play an important role in ischemia–
reperfusion injury in the central nervous system 
where NHE1 inhibition is beneficial [92]. Studies 
have shown the NHE1 inhibition has potent antifi-
brillatory and antiarrhythmic effects in dogs and 
rats [93, 94]. These effects extend to other species 
where NHE1 inhibition has been shown to an 
effective intervention for resuscitation from ventric-
ular fibrillation [95]. In addition, NHE1 inhibition 
has been shown to be a better protective agent than 
ischemic preconditioning in some trials [96, 97]. 
It has been suggested that NHE1 inhibitors may be 
of use during cardiac surgery, including being of 
use in hearts subjected to prolonged hypothermic 
storage [98]. Kim et al. [99, 100] also showed that 
NHE1 inhibition was beneficial in improving the 
outcome in a canine transplantation model. 
Inhibition of NHE1 has also been shown to be pro-
tective in models of cardiac resuscitation [101]. 
NHE1 inhibition may additionally be useful in 
treatment of circulatory shock as NHE-1 inhibi-
tion attenuated ischemic myocardial hypercon-
tracture and cardiovascular decompensation, and 
delayed the onset of hypovolemic circulatory 
shock in a porcine model of circulatory shock 
[102]. Overall, it can be said that inhibition of 
NHE1 activity has many and varied beneficial car-
diovascular effects in a large number of models.

Clinical Trials

Despite all the success with inhibition of NHE1 in 
preclinical experiments, trials with NHE1 inhibi-
tors have not been very successful. Large-scale 
studies with several inhibitors in various types of 

myocardial infarctions and treatments have given 
mostly disappointing results (see [87] for review). 
Rupprecht et al. [103] tested effects of cariporide 
in a small trial of patients with myocardial infarc-
tion who received coronary angioplasty. They 
found some beneficial effects on ejection fraction, 
wall-motion abnormalities and enzyme release. 
A larger scale two-stage trial [104] with eniporide 
treatment of myocardial infarction showed a dose-
dependent effect to reduce enzyme release, indi-
cating reduced infarction. However, in a second 
later stage of the trial there was no beneficial 
effect and an overall negative effect. The reason 
for the discrepancy between the beneficial effects 
in pre-clinical trials and the negative effects in 
clinical trials may be because NHE inhibition is 
required early in ischemia, rather than in reperfu-
sion as was the case in the clinical trials [87]. The 
GUARDIAN trial [105], had some more positive 
results. In patients undergoing coronary artery 
bypass graft surgery analysis of subgroups showed 
that cariporide was beneficial. Treatment with the 
inhibitor in this trial was early, which may account 
for its beneficial effect in this study [87]. The 

-
tion of NHE1 by cariporide reduces myocardial 
injury in patients with coronary artery bypass 
graft surgery. Cariporide reduced myocardial 
infarction but it also had adverse side effects and 
increasing cerebrovascular events significantly. 
This resulted in the study being terminated early 
[87, 105]. Another study [106] tested the efficacy 
of the NHE inhibitor zoniporide on reducing car-
diovascular events in patients undergoing non-
cardiac vascular surgery. There was no beneficial 
effect and this has been attributed to a lack of 
myocardial reperfusion, which is required for 
beneficial NHE inhibitors to access the myocar-
dium [87, 106].

NHE1 Is Elevated in Myocardial 
Disease

A variety of studies have shown that NHE1 protein 
expression and activity increases in the myocar-
dium in response to stimuli that occur in the  disease 
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state. Early experiments showed that NHE1 
 message levels are elevated in hearts subjected to 
ischemia followed by reperfusion. In addition, 
treatment of primary cultures of neonatal rat myo-
cytes with low external pH increased NHE1 activ-
ity [107]. Further studies showed that ischemia 
with or without reperfusion increase NHE1 levels 
in the disease state [108]. Interestingly, human sar-
colemmal NHE1 activity was elevated in recipient 
hearts with chronic end stage heart failure, even 
though protein abundance was not increased [109] 
suggesting that the protein is activated (Fig. 4).

Aside from ischemia–reperfusion, the expres-
sion level and activity of NHE1 are elevated in a 
variety of cardiovascular diseases, including in 
hypertensive, hypertrophied, or diabetic myocar-
dium [69, 110–112]. Both NHE1 message levels 
and protein levels have been shown to be ele-
vated in these models. In aldosterone-induced 
hypertrophy, inhibition of NHE1 activity pre-
vented the effect of aldosterone on inducing 
 cardiac hypertrophy [69].

Transgenic Models of Elevated NHE1 
Show Hypertrophy, but Surprisingly, 
Resistance to Ischemia Reperfusion

Because of the known elevation in the levels of 
NHE1 that occur in myocardial disease, a number 
of studies have examined transgenic mice with 

elevation of the levels of the NHE1 protein. We 
first examined the effect of NHE1 overexpres-
sion in mice hearts subjected to subjected to 20 
min of ischemia followed by 40 min of reperfu-
sion. Surprisingly, contractility after ischemia 
reperfusion, improved in NHE1-overexpressing 
hearts (Fig. 4). In addition, NMR spectroscopy 
revealed that NHE1 overexpressor hearts con-

and there was no difference in Na+ accumulation 
during between transgenic and WT hearts. 
Cariporide, the NHE1 inhibitor, equivalently 
protected both WT and NHE1-overexpressing 
hearts. Similar results were later shown by Cook 
et al. [113] who also showed that NHE1 overex-
pression induced an ER stress response in mouse 
myocardium, which might afford protection 
against ischemia–reperfusion-induced injury. We 
also suggested that a possible explanation for the 
beneficial effects is that basal activity of NHE1 is 
not rate-limiting in causing damage during isch-
emia–reperfusion, therefore increasing the level 
of NHE1 does not enhance injury and can have 
some small protective effects [114].

While overexpression of NHE1 may have 
some beneficial effects with ischemia and reperfu-
sion, it has other detrimental effects. In a different 
transgenic model, Nakamura et al. [115] demon-
strated that overexpression of an activated NHE1 
led to cardiac hypertrophy and eventually to heart 
failure. Intracellular Na+ levels were elevated, as 
were both diastolic and systolic calcium levels. 
This study found that the Ca2+-dependent prohy-
pertrophic molecules calcineurin and CaMKII 
were highly activated in these transgenic hearts. 
More recently we examined transgenic mice that 
had an elevation of either wild-type NHE1 protein 
or had an elevation of hyperactive NHE1 protein 
[116]. We found that mice with hyperactive NHE1 
developed hypertrophy, including elevated heart 
weight-to-body weight ratio and increased cross-
sectional area of the cardiomyocytes, interstitial 
fibrosis, as well as depressed cardiac function. 
Mice which expressed only wild-type NHE1 had 
modest changes in gene expression whereas 
mice expressing hyperactive NHE1 had a very 
strong transcriptional response. The most signifi-
cant changes in gene expression were elevations 
in message levels of genes involved in cardiac 

Fig. 4   Chronic stimuli increase Na+–H+ exchanger activity. 
Chronic stimulation by ischemia, acidosis, or other factors 
can cause an elevation in Na+–H+ exchanger messenger 
RNA levels, activity, and protein levels. This can lead to expres-
sion of a hypertrophic gene pattern but can also lead to 
enhanced resistance to ischemia–reperfusion damage
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 hypertrophy, cardiac necrosis/cell death, and 
 cardiac infarction. Secreted phosphoprotein 1 and 
its signaling pathways were notably upregulated 
in mice with hyperactive NHE1. This study 
 demonstrated that expression of activated NHE1 
elicits specific pathways of gene activation in the 
myocardium that lead to cardiac hypertrophy, cell 
death, and infarction (Fig. 4).

Conclusions

It is clear that NHE1 has a number of detrimental 
effects on the myocardium and is involved in the 
cardiac pathologies of ischemia–reperfusion 
damage and cardiac hypertrophy. NHE1 inhibi-
tion has not yet proven to be a useful clinical tool. 
Whether more specific NHE1 inhibitors can be 
developed, which could be useful clinically for 
treatment of ischemic heart disease, has still to be 
determined. It is of interest that elevation of 
NHE1 levels has some cardioprotective effects. 
Whether this is due to elevation of ER stress pro-
teins or through other cardioprotective mecha-
nisms should be investigated. Animal models 
have been able to achieve almost total inhibition 
of NHE1 protein activity, while this may be dif-
ficult to obtain in humans with treatment with 
inhibitors. Is it possible that clinical studies have 
achieved only partial inhibition of the Na+–H+ 
exchanger in humans and that the inhibition is 
both not effective enough to prevent calcium 
overload and also abrogates some other benefi-
cial activities of the protein? Further studies are 
required to answer this question. The detrimental 
effects of elevation of NHE1 levels, in causing 
cardiac hypertrophy, are of significant interest. 
Since NHE1 inhibitors prevent myocardial hyper-
trophy in preclinical studies, NHE1 inhibition for 
treatment of myocardial hypertrophy remains a 
potential clinical target.
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